If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+0.39x-0.085=0
a = 1; b = 0.39; c = -0.085;
Δ = b2-4ac
Δ = 0.392-4·1·(-0.085)
Δ = 0.4921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.39)-\sqrt{0.4921}}{2*1}=\frac{-0.39-\sqrt{0.4921}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.39)+\sqrt{0.4921}}{2*1}=\frac{-0.39+\sqrt{0.4921}}{2} $
| 50=s/8+40 | | 10s+23=83 | | .45m-9=-9m | | 2+3/4x=x–3/4 | | 9=5/6x+2/3x | | 3/2-24=1/6x-6 | | y=-50-3 | | 7t+9=9t | | 2x-44=180° | | -4x=3+11 | | (½)x–2=x–4 | | 150m-100m+43,200=45,900-175 | | n+0.25n=95 | | 8–4x=6x+118 | | 95=n+0.25n | | 2(3x-x)=1-(x-2) | | 5x-2+74-58=180 | | -3x-1=2x+4-5x | | 120=f/2 | | 5.9g+8=2.9g+26 | | J=c-5 | | –4q+4=4−4q | | 6n=3n+3 | | 550=10x+180 | | 3x-1=-5x-17 | | 20+12y=604 | | 5-8b=37 | | z-692=268 | | z-692=368 | | 6c=21 | | x-4/5x=1/5x+1 | | -50=y−3 |